spin-coating-machines-for-flexible-electronics

Epitaxial Films Through Spin Coating – Used In

Spin coating machine can be used to deposit epitaxial films of inorganic materials such as zinc oxide (ZnO), lead (II) iodide (PbI 2), sodium chloride (NaCl) and cesium lead bromide (CsPbBr 3) onto a variety of single-crystal and single-crystal–like substrates. The spin coating process can use either solutions of the material or precursors to the material.

 

Epitaxial films using spin coating machine for flexible electronics, displays, and solar cells

 

spin coating machines for flexible electronics, displays, and solar cells
Epitaxial Spin Coating Schematic

 

The spin coating of epitaxial films offers an inexpensive and readily accessible route to single crystal like materials that should exhibit superior electronic and optical properties owing to the absence of high-angle grain boundaries.The films were deposited from solutions of the material or of the material that readily converted to the final product with only volatile side products. The precursor route used for depositing ZnO from an ammine complex should be applicable to other metal oxides.

Spin coating also offers two avenues to highly ordered semiconductors for flexible electronics, displays, and solar cells. The materials can be spin coated onto flexible single crystal like metal foils or they can be deposited by more conventional vapor deposition techniques onto spin-coated water soluble salts such as NaCl that serve as sacrificial templates for epitaxial lift off of free-standing semiconductor foils.

Reference: DOI: 10.1126/science.aaw6184, Science Magazine Digital

 

spin-coating-process-in-thin-film-fabrication

Application Of Spin Coating Process In Thin Film Fabrication

We prepared PMMA-LZO polymer composite film by ultrasound-assisted mixing of PMMA and LZO solution followed by spin coating process, the solution on ITO (Indium tin oxide) coated the glass. The spin coater (Navson-NT12000) used here was vacuum free chamber. Operating conditions such as the 2000 rpm for 10 seconds and ramped to 6000 rpm for 20 seconds were maintained with N2 gas supply. The final thickness of the film measured to be 1.6 µm using scanning electron microscopy (SEM). The thickness of the film was uniform and smooth surface finish. PMMA-LZO polymer composite film was further used as a dielectric layer in the film capacitor.

Kishor Kumar M J
Doctoral Student
NITK Surathkal
Karnataka, India

 


 

Spin Coating Process Theory

 

Spin coating has been used for several decades for the application of thin lms. A typical process involves depositing a
small puddle of a fuid resin onto the center of a substrate and then spinning the substrate at high speed (typically around
3000 rpm). Centripetal acceleration will cause the resin to spread to, and eventually off, the edge of the substrate leaving a thin film of resin on the surface. Final film thickness and other properties will depend on the nature of the resin (viscosity, drying rate, percent solids, surface tension, etc.) and the parameters chosen for the spin process.

Factors such as final rotational speed, acceleration, and fume exhaust contribute to how the properties of coated films are defined. One of the most important factors in spin coating is repeat-ability. Subtle variations in the
parameters that define the spin process can result in drastic variations in the coated film.

Source: Spin Coat Theory

 

spin-coating-technique-uniformly-dispersed-battery-electrode-composite-materials

Uniformly Dispersed Battery Electrode Composite Materials Using Spin Coater

Investigating electrode materials morphology, a spin coating technique was used to prepare the composite thin-films. Typical coating methods such as blade coating, dip coating, and drop casting form dense, thick film layers that are inappropriate to adequately visualize distinctive morphology and differentiate the degree of material dispersity in the electrode. The spin coating method affords a thin, uniform film layer, and morphological differences can be easily detected even by optical microscopy (OM) at low magnification. While battery electrode performance cannot be directly measured using the spin-coating technique, the method is a facile approach to visualize more distinct images of the electrode components in order to judge materials distribution, and help interpret the impact of materials size and distribution on electrical and electro-chemical behavior in a dense electrode.

 

spin-coating-technique-uniformly-dispersed-battery-electrode-composite-materials

 

Figure shows Field Emission-Scanning Electron Microscopy (FE-SEM) images of OAFe3O4/carbon/P3HT and OA-Fe3O4/carbon/PVDF battery composite electrodes fabricated by doctor blade (Figure A and B) and spin coat (Figure C and D) processes, respectively.

Morphological differences between the two systems are difficult to observe from the doctor blade samples (Figure A, B) due to their thick, dense nature. Alternatively,distinct morphological differences are apparent with the thinner, spin-coated alternatives (Figure C, D). The spin coated material shows the distinct morphology associated with the material dispersion state.

 

About Spin Coating Technique

Spin coating is a procedure used to deposit uniform thin films to flat substrates. Usually a small amount of coating material is applied on the center of the substrate, which is either spinning at low speed or not spinning at all. Wikipedia

 

Reference:https: Brookhaven National Laboratory